
x86 Disassembler Internals

22c3: Private Investigations
December 2005

Richard Johnson | rjohnson@idefense.com

Welcome

• Who am I?
Richard Johnson
Senior Security Engineer, iDEFENSE Labs
Other Research: nologin.org / uninformed.org

• What is iDEFENSE?

• What is the purpose of this talk?
– Introduce the core components of a disassembler
– Refresh binary format parsing concepts
– Explore programmatic disassembly analysis methods
– Inspire the audience to take development of binary analysis

tools a little further and explore the potential for automated
disassembly analysis programs.

Agenda

• Introduction

• Disassember Core Architecture
– Instruction Decoder

• IA-32

– Executable Binary Format Parser
• Executable and Linkable Format (ELF)
• Portable Executable (PE)

– Disassembly Analyzer

• Basic Disassembly Analysis
– Data Associations

• Function Recognition
• Cross-Referencing

– Hinting
• System Calls
• Function Calls
• Assembly Syntax

– Demo (codis)

Agenda

• Advanced Disassembly Analysis
– Path Analysis

• Loop Detection

– Data Analysis
• Static data flow analysis
• Emulation
• Data Structure Recognition
• Demo (ida-x86emu + idastruct)

• Conclusion

Introduction

• Disassemblers decode machine language into
human-readable mnemonics

• Reverse-engineering in the software world
makes use of a disassembler to understand an
unknown or closed system.

• Reverse-engineering has many applications
– Interoperability
– Copyright evasion
– Technology theft
– Software security

Introduction

• The goal of reverse engineering is to gain a
higher understanding of the machine readable
code that is available.

• The low-level disassembler is powerful, yet
limited. Manual reverse-engineering is tedious.

• Advanced disassemblers are capable of
recognizing structures and relationships within
binary code.
– Executable binary format handling
– Function recognition / argument detection
– Code and data cross-referencing
– Structure recognition

Disassembler Core Architecture

Disassembler Core Architecture

• The core function of a disassembler is to
interpret executable files and decode their
instructions.

• The instruction decoder translates compiled
binary instructions back into mnemonics as
defined by the architecture's reference
manuals.

• The executable file parsers are each designed
to extract useful information from various
executable binary formats.

IA-32 Instruction Decoding

• The IA-32 processor is considered to be a CISC
architecture. The instruction set includes many
operands which do similar things or combine
multiple operations into one instruction.

• RISC architectures have far fewer opcodes and
simpler opcode lookup algorithms

• IA-32 has variable length opcodes and opcode
extensions, which results in a larger set of
tables for opcode and operand decoding.

IA-32 Instruction Decoding

• IA-32 Opcode Table and Flags
// 1-byte opcodes
INST inst_table1[256] = {

{ INSTRUCTION_TYPE_ADD, "add", AM_E|OT_b|P_w, AM_G|OT_b|P_r, FLAGS_NONE, 1 },
{ INSTRUCTION_TYPE_ADD, "add", AM_E|OT_v|P_w, AM_G|OT_v|P_r, FLAGS_NONE, 1 },
{ INSTRUCTION_TYPE_ADD, "add", AM_G|OT_b|P_w, AM_E|OT_b|P_r, FLAGS_NONE, 1 },
{ INSTRUCTION_TYPE_ADD, "add", AM_G|OT_v|P_w, AM_E|OT_v|P_r, FLAGS_NONE, 1 },
{ INSTRUCTION_TYPE_ADD, "add", AM_REG|REG_EAX|OT_b|P_w, AM_I|OT_b|P_r, FLAGS_NONE, 0 },
{ INSTRUCTION_TYPE_ADD, "add", AM_REG|REG_EAX|OT_v|P_w, AM_I|OT_v|P_r, FLAGS_NONE, 0 },
{ INSTRUCTION_TYPE_PUSH, "push", AM_REG|REG_ES|F_r|P_r, FLAGS_NONE, FLAGS_NONE, 0 },
{ INSTRUCTION_TYPE_POP, "pop", AM_REG|REG_ES|F_r|P_w, FLAGS_NONE, FLAGS_NONE, 0 },
{ INSTRUCTION_TYPE_OR, "or", AM_E|OT_b|P_w, AM_G|OT_b|P_r, FLAGS_NONE, 1 },
{ INSTRUCTION_TYPE_OR, "or", AM_E|OT_v|P_w, AM_G|OT_v|P_r, FLAGS_NONE, 1 },

....
// Operand Addressing Methods, from the Intel manual
#define MASK_AM(x) ((x) & 0x00ff0000)
#define AM_A 0x00010000 // Direct address with segment prefix
#define AM_C 0x00020000 // MODRM reg field defines control register
#define AM_D 0x00030000 // MODRM reg field defines debug register
#define AM_E 0x00040000 // MODRM byte defines reg/memory address
#define AM_G 0x00050000 // MODRM byte defines general-purpose reg
....
// Operand Types, from the intel manual
#define MASK_OT(x) ((x) & 0xff000000)
#define OT_a 0x01000000
#define OT_b 0x02000000 // always 1 byte
#define OT_c 0x03000000 // byte or word, depending on operand
#define OT_d 0x04000000 // double-word
#define OT_q 0x05000000 // quad-word
#define OT_dq 0x06000000 // double quad-word

(example taken from from libdasm.h)

IA-32 Instruction Decoding

• IA-32 Opcode Decoding
– Parse opcode prefixes

• First byte of opcode
• Indicate multi-byte opcodes or opcode extensions
• Determine lookup table

– Perform lookup in opcode table by current index value

• IA-32 Operand Decoding
– Index opcode table to get operand types and flags

• Addressing method
– Register
– Immediate
– Displacement

• Operand type
– Word
– Double-word
– Float

Executable Binary Formats

• Executable binary formats instruct an
operating system how to initialize the required
environment for an executable and how to
place the binary in memory for execution.

• The kernel is responsible for:
– Creating a new task
– Loading a binary into memory
– Loading a binary's interpreter
– Transferring control to the new task

• The kernel understands the binary as a series
of memory segments.

Executable Binary Formats

• Most binaries are dynamically linked

• Execution control is transferred to the linker
rather than the executable's entry point.

• The linker is responsible for:
– Library loading
– Symbol relocation
– Symbol resolution

• The linker interprets the binary as a series of
sections with special run-time purposes.

Executable and Linkable Format (ELF)

• Executable and Linkable Format
– Originally introduced in UNIX SVR4 in 1989 and is now used in

Linux and most System V derivatives like Solaris, IRIX,
FreeBSD and HP-UX

– Official reference:
ELF Portable Formats Specification, Version 1.1
Tool Interface Standards (TIS)

• Contains important information for binary
analysis including section headers, symbol
tables, string tables, dynamic linking
information.

Executable and Linkable Format (ELF)

• ELF Objects
– Header info

• ELF Header
– Details how to access headers within the object and identifies the

executable's properties

• Section Header Table
– Details how to access various sections in the file (linker)

• Program Header Table
– Details how to load the executable into memory (kernel)

– Object Code
– Relocation info
– Symbols

• .symtab – Contains information about all symbols being defined or
imported (not present if binary is stripped)

• .dynsym – Contains information about external symbols that need
to be resolved or dynamic symbols that are exported by the binary

Executable and Linkable Format (ELF)

• ELF Header
– Located at the beginning of every ELF binary
– Identifies properties of the ELF binary
– Details how to access section and program header tables

#define EI_NIDENT (16)

typedef struct
{

unsigned char e_ident[EI_NIDENT]; /* Magic number and other info */
Elf32_Half e_type; /* Object file type */
Elf32_Half e_machine; /* Architecture */
Elf32_Word e_version; /* Object file version */
Elf32_Addr e_entry; /* Entry point virtual address */
Elf32_Off e_phoff; /* Program header table file offset */
Elf32_Off e_shoff; /* Section header table file offset */
Elf32_Word e_flags; /* Processor-specific flags */
Elf32_Half e_ehsize; /* ELF header size in bytes */
Elf32_Half e_phentsize; /* Program header table entry size */
Elf32_Half e_phnum; /* Program header table entry count */
Elf32_Half e_shentsize; /* Section header table entry size */
Elf32_Half e_shnum; /* Section header table entry count */
Elf32_Half e_shstrndx; /* Section header string table index */

} Elf32_Ehdr;

Executable and Linkable Format (ELF)

• ELF Section Header Table
– Located by adding:

» base_addr + Elf32_Ehdr->e_shoff

– Describes sections in the binary
• Contains flags that describe memory permissions and type of data

contained in the section
• Can describe relationships between two sections in an ELF file.

– Disassembler should take note of special sections
• .dynamic, .plt, .got, .symtab, .dynsym, .text

typedef struct
{

Elf32_Word sh_name; /* Section name (string tbl index) */
Elf32_Word sh_type; /* Section type */
Elf32_Word sh_flags; /* Section flags */
Elf32_Addr sh_addr; /* Section virtual addr at execution */
Elf32_Off sh_offset; /* Section file offset */
Elf32_Word sh_size; /* Section size in bytes */
Elf32_Word sh_link; /* Link to another section */
Elf32_Word sh_info; /* Additional section information */
Elf32_Word sh_addralign; /* Section alignment */
Elf32_Word sh_entsize; /* Entry size if section holds table */

} Elf32_Shdr;

base_addr + Elf32_Ehdr->e_shoff

Executable and Linkable Format (ELF)

• ELF Symbols
– Sections of type SHT_SYMTAB or SHT_DYNSYM contain symbol tables.

which are identical and can be parsed the same way.

– The st_info member describes symbol type, for example whether the
symbol is a code or data object.

– Symbols will be associated with code locations once disassembly is
performed.

typedef struct
{

Elf32_Word st_name; /* Symbol name (string tbl index) */
Elf32_Addr st_value; /* Symbol value */
Elf32_Word st_size; /* Symbol size */
unsigned char st_info; /* Symbol type and binding */
unsigned char st_other; /* Symbol visibility */
Elf32_Section st_shndx; /* Section index */

} Elf32_Sym;

Executable and Linkable Format (ELF)

• ELF Symbol Parsing
– Enumerate section headers:

– Enumerate the symbol table:

–

– String table lookup:

for (shdr = (base + ehdr->e_shoff), count = 0;
count < ehdr->e_shnum;
shdr++, count++)

{
if(shdr->sh_type == SHT_DYNSYM ||

shdr->sh_type == SHT_SYMTAB)
// parse symbol table

}

for (sym = (base + shdr->sh_offset), symidx = 0;
symidx < (shdr->sh_size / shdr->sh_entsize);
sym++, symidx++)

{
// store symbol information

}

Elf32_Shdr *strtab = base + ehdr->e_shoff
+ (shdr->sh_link * ehdr->e_shentsize);

char *string = base + strtab->sh_offset + sym->st_name;

Section Header Structure
typedef struct
{

Elf32_Word sh_name;
Elf32_Word sh_type;
Elf32_Word sh_flags;
Elf32_Addr sh_addr;
Elf32_Off sh_offset;
Elf32_Word sh_size;
Elf32_Word sh_link;
Elf32_Word sh_info;
Elf32_Word sh_addralign;
Elf32_Word sh_entsize;

} Elf32_Shdr;

Symbol Table Structure
typedef struct
{

Elf32_Word st_name;
Elf32_Addr st_value;
Elf32_Word st_size;
unsigned char st_info;
unsigned char st_other;
Elf32_Section st_shndx;

} Elf32_Sym;

Portable Executable Format (PE/COFF)

• Portable Executable and Common Object File Format
– Originally introduced as part of the Win32 specification
– Derived from DEC's Common Object File Format (COFF)
– Object files are generated as COFF and later linked as PE binaries
– Offical reference:

Microsoft Portable Executable and Common Object File Format Specification
Microsoft Corporation Revision 6.0 - February 1999

Portable Executable Format (PE/COFF)

• PECOFF Structure
– DOS Stub + Signature

• Pointer to PE Sig at offset 0x3c
• Executable MS-DOS program

– IMAGE_NT_SIGNATURE (0x00004550)
– File Header (COFF)
– Optional Header (PE Header)
– Data Directories

• Located at static offsets in the binary
• Point to specific data structures

– Imports, Exports, IAT, etc

– Section Headers
– Sections

+-------------------+
| DOS-stub |
+-------------------+
| File-Header |
+-------------------+
| optional header |
|- - - - - - - - - -|
| |----------------+
data directories			
(RVAs to direc-	-------------+		
tories in sections)			
	---------+		
+-------------------+			
	-----+		
section headers			
(RVAs to section	--+		
borders)			
+-------------------+<-+			
	<---	---+	
section data 1			
	<---	-------+	
+-------------------+<----+			
section data 2			
	<--------------+		
+-------------------+

Portable Executable Format (PE/COFF)

• COFF File Header
– Locate by adding the value at offset

0x3c to the base address
– Number of sections
– COFF Symbol table information
– Optional header size
– Characteristic flags

• Byte ordering
• Word size

typedef struct _COFF {
WORD Machine;
WORD NumberOfSections;
DWORD TimeDateStamp;
DWORD PointerToSymbolTable;
DWORD NumberOfSymbols;
WORD SizeOfOptionalHeader;
WORD Characteristics;

}COFF, *PCOFF;

+-------------------+
| DOS-stub |
+-------------------+
| File-Header |
+-------------------+
| optional header |
|- - - - - - - - - -|
| |----------------+
data directories			
(RVAs to direc-	-------------+		
tories in sections)			
	---------+		
+-------------------+			
	-----+		
section headers			
(RVAs to section	--+		
borders)			
+-------------------+<-+			
	<---	---+	
section data 1			
	<---	-------+	
+-------------------+<----+			
section data 2			
	<--------------+		
+-------------------+

Portable Executable Format (PE/COFF)

• Optional Header (PE Hdr)
typedef struct _OPTHEADERS{

WORD Magic;
BYTE MajorLinkerVersion;
BYTE MinorLinkerVersion;
DWORD SizeOfCode; // code segment size
DWORD SizeOfInitializedData; // data segment size
DWORD SizeofUninitializedData; // data segment size
DWORD AddressOfEntryPoint; // entry point
DWORD BaseOfCode;
DWORD BaseOfData;
DWORD ImageBase;
DWORD SectionAlignment;
DWORD FileAlignment;
WORD MajorOperatingSystemVersion;
WORD MinorOperatingSystemVersion;
WORD MajorSubsystemVersion;
WORD MinorSubsystemVersion;
DWORD Reserved;
DWORD SizeOfImage;
DWORD SizeOfHeaders;
DWORD CheckSum;
WORD Subsystem;
DWORD DllCharacteristics;
DWORD SizeOfStackReserve;
DWORD SizeOfStackCommit;
DWORD SizeOfHeapReserve;
DWORD SizeOfHeapCommit;
DWORD LoaderFlags;
DWORD NumberOfRvaAndSizes; // data directories

}OPTHEADERS, *POPTHEADERS;

Portable Executable Format (PE/COFF)

• COFF Section Tables
– Located by adding:

• Then enumerate the data directories until you hit the section tables

– Relocation entries are only present in object files
– Line-number entries associate code with line numbers in source files
– Characteristic flags indicate section types, memory permissions, and

alignment information

typedef struct _SECTIONTABLES {
BYTE Name[8]; // Section name
DWORD VirtualSize; // Size of section in memory
DWORD VirtualAddress; // Address of mapped section
DWORD SizeOfRawData; // Size of section on disk
DWORD PointerToRawData; // Section file offset
DWORD PointerToRelocations; // Relocation entries file offset
DWORD PointerToLineNumbers; // Line-number entries file offset
WORD NumberOfRelocations; // Number of relocation entries
WORD NumberOfLineNumbers; // Number of line-number entries
DWORD Characteristics; // Characteristics flags

}SECTIONTABLES, *PSECTIONTABLES;

base_addr + *(uint32)(base_addr + 0x3c)
+ sizeof(COFF) + PCOFF->SizeOfOptionalHeader

Portable Executable Format (PE/COFF)

• PECOFF Symbols
– Data_Directory[1] – Import Directory

• .idata section

– Import Directory entries describe DLLs
• DLL Name
• RVA of Import Lookup Table
• RVA of Import Address Table

– Image Thunk Data
• Table of structures describing functions to

be imported from the module

typedef struct _IMAGE_IMPORT_DESCRIPTOR {
union {

DWORD Characteristics;
PIMAGE_THUNK_DATA OriginalFirstThunk;

} DUMMYUNIONNAME;
DWORD TimeDateStamp;
DWORD ForwarderChain;
DWORD Name;
PIMAGE_THUNK_DATA FirstThunk;

} IMAGE_IMPORT_DESCRIPTOR,*PIMAGE_IMPORT_DESCRIPTOR;

Directory Table

Null Directory Table

1.DLL Import Lookup Table

Null Entry

2.DLL Import Lookup Table

Null Entry

Hint Name Table

Portable Executable Format (PE/COFF)

• PE Symbol Parsing
– Locate and loop Import Directory Table

– Get the pointer to the FirstThunk

– Loop Thunks for symbol import data

Import name entry
typedef struct _IMAGE_IMPORT_BY_NAME {

WORD Hint;
BYTE Name[1];

} IMAGE_IMPORT_BY_NAME,*PIMAGE_IMPORT_BY_NAME;

Import Thunk
typedef struct _IMAGE_THUNK_DATA {

union {
LPBYTE ForwarderString;
PDWORD Function;
DWORD Ordinal;
PIMAGE_IMPORT_BY_NAME AddressOfData;

} u1;
} IMAGE_THUNK_DATA,*PIMAGE_THUNK_DATA;

Directory Table

Null Directory Table

1.DLL Import Lookup Table

Null Entry

2.DLL Import Lookup Table

Null Entry

Hint Name Table

IDD->FirstThunk

struct IMAGE_IMPORT_BY_NAME[]

Disassembly Analyzer

• The final component of a useful disassembler for reverse
engineering is the disassembly analyzer.

• The analyzer builds a database of associations from the
binary and can perform additional specialized disassembly
analysis tasks.

• Disassembly analyzers attempt to aid the reverse engineer
by automating some of the manual processes used when
looking at assembly code dead listings.

• Programmatic disassembly analysis is an imperfect science.
The more powerful the analyzer becomes, the closer it
becomes to truly emulating the disassembled code

Disassembly Analysis

Disassembly Analysis

• A wealth of information can be generated using
very simple analysis logic.

• Data associations including function detection,
static data references, string references, and
execution branch references can be performed
through simple opcode and operand parsing.

• Assembly hinting or commenting can aid the
reverse-engineer by eliminating guesswork.
– System call detection and argument labelling
– Function call calling convention and argument detection
– Assembly syntax hints

Data Associations

• Function detection
– Standard function detection is done by pattern matching for

function prologues.
– Prologues are generated during compilation and typically

perform tasks including frame initialization and stack canary
generation.

Standard function prologue

| 55 | push %ebp ; push old frame pointer
| 89 e5 | mov %esp, %ebp ; store current stack pointer as new frame

Microsoft Visual Studio “hotfix” function prologue for system libraries and drivers

| 90 | nop ; five nops make space for a long relative jmp
| 90 | nop ;
| 90 | nop ;
| 90 | nop ;
| 90 | nop ;

; Begin Function Prologue
| 8b ff | mov %edi, %edi ; 2-byte nop (space for short relative jmp)
| 55 | push %ebp ; push old frame pointer
| 89 e5 | mov %esp, %ebp ; store current stack pointer as new frame

Data Associations

• Function detection without prologue
– Cross reference calls in case of -fomit-frame-pointer

– Symbolic function names are created for code locations that do
not have a pre-defined symbol associated with them.

080483b4 |
........ | ;;;;;;;;;;;;;;;;;;;;;;;;;;;
........ | ;;; S U B R O U T I N E ;;;
........ | ;;;;;;;;;;;;;;;;;;;;;;;;;;;
........ | sub_080483b4: ; xrefs: 0x08048403
........ | sub $0x3c, %esp ;
080483b7 | mov 0x40(%esp), %eax ;
080483bb | mov %eax, 0x4(%esp) ;
080483bf | lea 0x10(%esp), %eax ;

080483f4 | shr $0x4, %eax ;
080483f7 | shl $0x4, %eax ;
080483fa | sub %eax, %esp ;
080483fc | movl $0x804851e, (%esp) ;
08048403 | call 0x80483b4 ;

Data Associations

• Cross Referencing
– Disassembly analyzers create a database of cross-references which

describe the relationships between code and data in the binary.

– Cross-references are determined by examining immediate operand
values or by tracing register exchanges to watch references to a
known value.

– The use of an instruction decoder core which implements operand
permissions flags is required.

• libdasm – available at nologin.org by jt
• libdisasm – available at bastard.sf.net by _mammon

– For each instruction, analyze the operands for internal relationships
• Check for operand types: IMMEDIATE, MEMORY, REGISTER
• Check operand permission flags

– Cross-references are stored in data-structures for later use.

Data Associations

• Code execution flow can be determined by detecting
code branches which are indicated by the RET, IRET,
INT, CALL and the various JMP opcodes for IA-32.

• Flow Control Instructions
– Call

• Indicates a new function
• Needs to be checked against symbol tables when displaying disassembly
• Pushes calling address before transferring execution control

– Branch
• Any opcode of the JMP variety
• Indicates new code 'block'
• Code blocks can be analyzed for functionality
• Used for loops, signal handlers, etc

– Return
• Used to divert flow control by popping a pointer from the stack

Data Associations

• Symbols, strings, and pointers within pre-initialized
data sections in the binary are examples of data
cross-references that can be determined through
simple disassembly analysis.

00401050 |
........ | ;;;;;;;;;;;;;;;;;;;;;;;;;;;
........ | ;;; S U B R O U T I N E ;;;
........ | ;;;;;;;;;;;;;;;;;;;;;;;;;;;
........ | sub_00401050: ; xrefs: 0x004010a7
........ | push %ebp ;
00401051 | mov %esp, %ebp ;
00401053 | sub $0x8, %esp ;
00401056 | movl $0x402000, (%esp) ; "this string is a pre-initialized variable\n"
0040105d | call <printf> ; imported shared library symbol
00401062 | leave ;
00401063 | ret ;
........
004010a7 | call <sub_00401050> ; symbolic function names cross-referenced
004010ac | mov $0x0, %eax ;
004010b1 | leave ;

Hinting

• Disassemblers should use a database of information
regarding system calls and standard system library
calls to aid in disassembly hinting.

• System Call hinting can help a reverse engineer
determine what system services a function utilizes.
– Syscall Numbers are stored in /usr/src/linux/include/asm/unistd.h
– Arguments are typically passed in registers, so once data xrefs are

applied we can tell if user-supplied data is being used in a system call.

• Function argument types and high level data-
structures can be parsed from header files.
– Every platform has a set of default libraries and headers.
– The more the disassembler knows about variable types, the better it

can understand how the data is being used.

Hinting

• Function call argument detection
– Function prologues swap the the current stack pointer into ebp to

represent the base of the stack for the local function
– Function arguments can be determined by internal references to

offsets of ebp
– In the case of code compiled without frame pointers, offsets to esp will

be used.
– Arguments can be determined as local variables vs passed arguments

depending on their offset to ebp
– Depending on calling convention, arguments to functions are typically

passed via the stack
• Stdcall – push args in reverse order to the stack (last to first)
• Fastcall – uses registers when possible to hold args

– Argument types can be determined via basic heuristics or by
prototype parsing

• Heuristics can determine if passed values are pointers to memory, string
references or integer values

Disassembly Analysis

• The features described in this section should be
standard fare.

• IDA Pro, HTE, the bastard, and Codis are currently
the only disassemblers available which implement
most of the features.

• Required development time: 2 - 3 weeks

Codis Demo

Advanced Disassembly Analysis

Advanced Disassembly Analysis

• The flexibility offered by DataRescue’s IDA Pro SDK
has allowed for recent advancements in disassembly
analysis capabilities.

• IDA Pro plug-ins have access to the program’s
internal database which allows for rapid
development of concept ideas.
– Path Analysis

• Peter Silberman’s loop detection plugin

– Data Analysis
• idastruct - data structure enumeration

Path Analysis

• Path analyzers recursively follow execution flow to
build a control flow graph.

• When reverse engineering, entire code paths can be
quickly grouped for functionality to speed the code
recognition process.

• Linear disassemblers can not determine the
relationships of code blocks, and may disassemble
instructions incorrectly if data is injected in-between
compiled code

Path Analysis

• Hand written assembly code can cause
disassemblers to generate code listings that are
completely incorrect:

(gdb) disas loc
Dump of assembler code for function loc:
0x0040107a <loc+0>: pushw $0xfeeb
0x0040107e <loc+4>: jmp 0x40107c <loc+2>
0x00401080 <loc+6>: pushl 0xaabbccdd
0x00401086 <loc+12>: mov $0x0,%eax
0x0040108b <loc+17>: leave
0x0040108c <loc+18>: ret

--

Breakpoint 1, 0x0040107a in loc ()
1: x/i $pc 0x40107a <loc>: pushw $0xfeeb
(gdb) si
0x0040107e in loc ()
1: x/i $pc 0x40107e <loc+4>: jmp 0x40107c <loc+2>
(gdb) si
0x0040107c in loc ()
1: x/i $pc 0x40107c <loc+2>: jmp 0x40107c <loc+2>
…

Path Analysis

• Once a control flow graph has been built
programmatically, it can easily be represented using
data visualization software.

Loop Detection

• Loop detection is an advanced application of control
flow analysis.

• Loop detection can be applied to recognize program
structure as well as specific types of vulnerabilities.

• Recognizing loops can aid other disassembly
analysis tasks and eliminate heavy analysis of code
multiple times.

• Example: Peter Silberman’s Loop Detection Plugin
– Designed to help reverse-engineers locate code loops that may lead to

exploitable scenarios.

Loop Detection

• Reducible loops have one entry point and can be
reduced to a Natural Loop.

• Natural Loop structure is found by determining node
dominance in the control flow graph.

• If node C is unreachable other than through node B,
then B dominates node C.

In this diagram, there is a small loop
between B and D.

The Natural Loop can be determined by
locating the path between the two nodes
that are under dominance of B.

The secondary loop between B and D
can be ignored when determining the
Natural Loop

Loop Detection

• Traditional loop detection algorithms are known to
have trouble detecting loops with more than one
potential entry point (non-reducible loops).

• Using IDA’s powerful cross-referencing and flow
control graphing algorithms, Peter has developed a
method for identifying irreducible loops.

• Peter’s work can be found on www.uninformed.org

Loop Detection

<- Loop

No Loop ->

Data Analysis

• Unlike code paths, analyzing data relationships is a
non-trivial exercise.

• Data references are occasionally supplied as
immediate values, but are more often passed
around in registers to perform operations.

• There are numerous obstacles to overcome when
tracing assembly for the purpose of data reference
tracking – it has yet to be implemented successfully.

• To follow data paths, a variable tracing algorithm
must be developed… or does it?

Data Analysis

• Variable Tracing
unsigned long registers[8];
unsigned long eip;
unsigned long eflags;

typedef struct _itrace {
struct _itrace *next, *prev;
ea_t addr; // address of reference
ea_t xref; // address referenced
unsigned char reftype; // RWX

} itrace_t;

// init trace
add_xref(ea, dst);

// simplified variable tracing loop
while(ea = ea.next)
{

while(op = operand.next)
{

mask = SIZE_MASKS[opsize];
switch(op->type)
{
case o_imm:

val = op->addr & mask;
break;

case o_displ:
val = (registers[op->reg] + op->addr)& mask;
break;

case o_phrase:
val = registers[op->phrase] & mask;
break;

}
}

if(search_itrace_list(val))
remove_xref(ea, dst);

else if search_itrace_list(src)
add_xref(ea, dst);

Data Analysis

• Variable Tracing
unsigned long registers[8];
unsigned long eip;
unsigned long eflags;

typedef struct _itrace {
struct _itrace *next, *prev;
ea_t addr; // address of reference
ea_t xref; // address referenced
unsigned char reftype; // RWX

} itrace_t;

// init trace
add_xref(ea, dst);

// simplified variable tracing loop
while(ea = ea.next)
{

while(op = operand.next)
{

mask = SIZE_MASKS[opsize];
switch(op->type)
{
case o_imm:

val = op->addr & mask;
break;

case o_displ:
val = (registers[op->reg] + op->addr)& mask;
break;

case o_phrase:
val = registers[op->phrase] & mask;
break;

}
}

if(search_itrace_list(val))
remove_xref(ea, dst);

else if search_itrace_list(src)
add_xref(ea, dst);

Data Analysis

• Variable Tracing
unsigned long registers[8];
unsigned long eip;
unsigned long eflags;

typedef struct _itrace {
struct _itrace *next, *prev;
ea_t addr; // address of reference
ea_t xref; // address referenced
unsigned char reftype; // RWX

} itrace_t;

// init trace
add_xref(ea, dst);

// simplified variable tracing loop
while(ea = ea.next)
{

while(op = op.next)
{

mask = SIZE_MASKS[opsize];
switch(op->type)
{
case o_imm:

val = op->addr & mask;
break;

case o_displ:
val = (registers[op->reg] + op->addr)& mask;
break;

case o_phrase:
val = registers[op->phrase] & mask;
break;

}
}

if(search_itrace_list(val))
remove_xref(ea, dst);

else if search_itrace_list(src)
add_xref(ea, dst);

Data Analysis

• Combinatorial Explosion
– Occurs when a huge number of possible combinations are created by

increasing the number of entities which can be combined--forcing us
to consider a constrained set of possibilities when we consider related
problems.

• Variable tracing is susceptible to combinatorial
explosion and infinite recursion if bounds are not set
on the depth of the search.

• In theory static data reference tracing is possible
but has yet to be successfully implemented beyond
proof of concept.

Emulation

• CPU emulation can be used as a powerful resource
when analyzing static code.

• CPU Emulation involves the execution of instructions
in a virtual CPU.

• Virtual CPUs emulate the core components of a
hardware CPU in software.
– Instruction decoding/evaluation
– Registers
– Memory

• Emulation is “safe”
– depending on implementation of course

ida-x86emu

• ida-x86emu is an opensource emulator written by
Chris Eagle and Jeremey Cooper
– Emulator codebase can be easily hooked for special analysis purposes.
– Undergoing development
– Some features are missing but code is easily hackable
– Use the CVS version!

• Evaluates complex instruction sequences

• Emulates dynamic memory allocator functionality

• Can hook PE imports and load required libraries
– Sometimes has some hiccups – currently looking into this

idastruct

• idastruct is data structure reference tracing code
built on top of ida-x86emu.

• Arbitrary bounds within the emulated memory space
can be traced using simple logic.

• As operands are evaluated for each instruction, a
check is made to determine if that operand is
referencing memory that is being traced.

• IDA database is updated with structure information
and member data as references are detected and
types are applied to the reference.

idastruct

• Structure reference tracing
void struct_trace(ea_t addr)
{

strace_t *trace;
ua_ana0(addr);

for(int opnum = 0; cmd.Operands[opnum].type != o_void; opnum++)
{

op_t *op = &cmd.Operands[opnum];
…
// evaluate operand value
…
for(trace = strace; trace; trace = trace->next)
{

// determine if operand value points within trace bounds
if(val >= trace->base && val <= trace->base + trace->size)
{

…
struc_t *sptr = trace->sptr;
member_t *mptr = get_member(sptr, val - trace->base);

if(!mptr)
{

char *mtype;
switch(get_dtyp_size(op->dtyp))
…
// assign a name to the new member that indicates type size
…

idastruct

• Structure reference tracing
void struct_trace(ea_t addr)
{

…
// create ida structure member
if(struct_member_add(sptr, name, val - trace->base, 0, NULL,

get_dtyp_size(op->dtyp)) < 0)
{

trace = trace->next;
continue;

}
mptr = get_member(sptr, val - trace->base);

}
…
// update member reference in ida disassembly
tid_t path[2];
path[0] = sptr->id;
path[1] = mptr->id;
op_stroff(addr, opnum,

path, 2, 0);
}

Conclusion

• The ability to identify arbitrary structures via binary
analysis should speed software reversing in all
areas.

• Directly applies to vulnerability discovery through
automation of fuzz template generation.

• Further analysis may be performed on the structure
relationships within execution paths to tie complete
structure hierarchies together.

Questions?

	x86 Disassembler Internals��22c3: Private Investigations�December 2005
	Welcome
	Agenda
	Agenda
	Introduction
	Introduction
	Disassembler Core Architecture
	Disassembler Core Architecture
	IA-32 Instruction Decoding
	IA-32 Instruction Decoding
	IA-32 Instruction Decoding
	Executable Binary Formats
	Executable Binary Formats
	Executable and Linkable Format (ELF)
	Executable and Linkable Format (ELF)
	Executable and Linkable Format (ELF)
	Executable and Linkable Format (ELF)
	Executable and Linkable Format (ELF)
	Executable and Linkable Format (ELF)
	Portable Executable Format (PE/COFF)
	Portable Executable Format (PE/COFF)
	Portable Executable Format (PE/COFF)
	Portable Executable Format (PE/COFF)
	Portable Executable Format (PE/COFF)
	Portable Executable Format (PE/COFF)
	Portable Executable Format (PE/COFF)
	Disassembly Analyzer
	Disassembly Analysis
	Disassembly Analysis
	Data Associations
	Data Associations
	Data Associations
	Data Associations
	Data Associations
	Hinting
	Hinting
	Disassembly Analysis
	Advanced Disassembly Analysis
	Advanced Disassembly Analysis
	Path Analysis
	Path Analysis
	Path Analysis
	Loop Detection
	Loop Detection
	Loop Detection
	Loop Detection
	Data Analysis
	Data Analysis
	Data Analysis
	Data Analysis
	Data Analysis
	Emulation
	ida-x86emu
	idastruct
	idastruct
	idastruct
	Conclusion
	Questions?

