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Welcome

• Who am I? 
Richard Johnson
Senior Security Engineer, iDEFENSE Labs 
Other Research: nologin.org / uninformed.org

• What is iDEFENSE?

• What is the purpose of this talk? 
– Introduce the core components of a disassembler
– Refresh binary format parsing concepts
– Explore programmatic disassembly analysis methods
– Inspire the audience to take development of binary analysis 

tools a little further and explore the potential for automated 
disassembly analysis programs.



Agenda

• Introduction

• Disassember Core Architecture
– Instruction Decoder

• IA-32

– Executable Binary Format Parser
• Executable and Linkable Format (ELF)
• Portable Executable (PE)

– Disassembly Analyzer

• Basic Disassembly Analysis
– Data Associations

• Function Recognition
• Cross-Referencing

– Hinting
• System Calls
• Function Calls
• Assembly Syntax

– Demo (codis)



Agenda

• Advanced Disassembly Analysis
– Path Analysis

• Loop Detection

– Data Analysis
• Static data flow analysis
• Emulation
• Data Structure Recognition
• Demo (ida-x86emu + idastruct)

• Conclusion



Introduction

• Disassemblers decode machine language into 
human-readable mnemonics

• Reverse-engineering in the software world 
makes use of a disassembler to understand an 
unknown or closed system.

• Reverse-engineering has many applications
– Interoperability
– Copyright evasion
– Technology theft
– Software security



Introduction

• The goal of reverse engineering is to gain a 
higher understanding of the machine readable 
code that is available.

• The low-level disassembler is powerful, yet 
limited. Manual reverse-engineering is tedious.

• Advanced disassemblers are capable of 
recognizing structures and relationships within 
binary code. 
– Executable binary format handling
– Function recognition / argument detection
– Code and data cross-referencing 
– Structure recognition



Disassembler Core Architecture



Disassembler Core Architecture

• The core function of a disassembler is to 
interpret executable files and decode their 
instructions.

• The instruction decoder translates compiled 
binary instructions back into mnemonics as 
defined by the architecture's reference 
manuals.

• The executable file parsers are each designed 
to extract useful information from various 
executable binary formats.



IA-32 Instruction Decoding

• The IA-32 processor is considered to be a CISC 
architecture. The instruction set includes many 
operands which do similar things or combine 
multiple operations into one instruction.

• RISC architectures have far fewer opcodes and 
simpler opcode lookup algorithms 

• IA-32 has variable length opcodes and opcode
extensions, which results in a larger set of 
tables for opcode and operand decoding.



IA-32 Instruction Decoding

• IA-32 Opcode Table and Flags 
// 1-byte opcodes
INST inst_table1[256] = {

{ INSTRUCTION_TYPE_ADD,  "add",  AM_E|OT_b|P_w,           AM_G|OT_b|P_r, FLAGS_NONE,   1 },
{ INSTRUCTION_TYPE_ADD,  "add",  AM_E|OT_v|P_w,           AM_G|OT_v|P_r, FLAGS_NONE,   1 },
{ INSTRUCTION_TYPE_ADD,  "add",  AM_G|OT_b|P_w,           AM_E|OT_b|P_r, FLAGS_NONE,   1 },
{ INSTRUCTION_TYPE_ADD,  "add",  AM_G|OT_v|P_w,           AM_E|OT_v|P_r, FLAGS_NONE,   1 },
{ INSTRUCTION_TYPE_ADD,  "add",  AM_REG|REG_EAX|OT_b|P_w, AM_I|OT_b|P_r, FLAGS_NONE,   0 },
{ INSTRUCTION_TYPE_ADD,  "add",  AM_REG|REG_EAX|OT_v|P_w, AM_I|OT_v|P_r, FLAGS_NONE,   0 },
{ INSTRUCTION_TYPE_PUSH, "push", AM_REG|REG_ES|F_r|P_r,   FLAGS_NONE,    FLAGS_NONE,   0 },
{ INSTRUCTION_TYPE_POP,  "pop",  AM_REG|REG_ES|F_r|P_w,   FLAGS_NONE,    FLAGS_NONE,   0 },
{ INSTRUCTION_TYPE_OR,   "or",   AM_E|OT_b|P_w,           AM_G|OT_b|P_r, FLAGS_NONE,   1 },
{ INSTRUCTION_TYPE_OR,   "or",   AM_E|OT_v|P_w,           AM_G|OT_v|P_r, FLAGS_NONE,   1 },

....
// Operand Addressing Methods, from the Intel manual
#define MASK_AM(x) ((x) & 0x00ff0000)
#define AM_A 0x00010000         // Direct address with segment prefix
#define AM_C 0x00020000         // MODRM reg field defines control register
#define AM_D 0x00030000         // MODRM reg field defines debug register
#define AM_E 0x00040000         // MODRM byte defines reg/memory address
#define AM_G 0x00050000         // MODRM byte defines general-purpose reg
.... 
// Operand Types, from the intel manual
#define MASK_OT(x) ((x) & 0xff000000)
#define OT_a 0x01000000
#define OT_b 0x02000000        // always 1 byte
#define OT_c 0x03000000        // byte or word, depending on operand
#define OT_d 0x04000000        // double-word
#define OT_q 0x05000000        // quad-word
#define OT_dq 0x06000000        // double quad-word

(example taken from from libdasm.h)



IA-32 Instruction Decoding

• IA-32 Opcode Decoding
– Parse opcode prefixes

• First byte of opcode
• Indicate multi-byte opcodes or opcode extensions 
• Determine lookup table

– Perform lookup in opcode table by current index value

• IA-32 Operand Decoding
– Index opcode table to get operand types and flags

• Addressing method
– Register
– Immediate
– Displacement 

• Operand type
– Word 
– Double-word
– Float



Executable Binary Formats

• Executable binary formats instruct an 
operating system how to initialize the required 
environment for an executable and how to 
place the binary in memory for execution. 

• The kernel is responsible for:
– Creating a new task
– Loading a binary into memory 
– Loading a binary's interpreter
– Transferring control to the new task

• The kernel understands the binary as a series 
of memory segments. 



Executable Binary Formats

• Most binaries are dynamically linked

• Execution control is transferred to the linker 
rather than the executable's entry point. 

• The linker is responsible for: 
– Library loading
– Symbol relocation
– Symbol resolution

• The linker interprets the binary as a series of 
sections with special run-time purposes. 



Executable and Linkable Format (ELF)

• Executable and Linkable Format
– Originally introduced in UNIX SVR4 in 1989 and is now used in 

Linux and most System V derivatives like Solaris, IRIX, 
FreeBSD and HP-UX

– Official reference:
ELF Portable Formats Specification, Version 1.1 
Tool Interface Standards (TIS)

• Contains important information for binary 
analysis including section headers, symbol 
tables, string tables, dynamic linking 
information. 



Executable and Linkable Format (ELF)

• ELF Objects
– Header info

• ELF Header
– Details how to access headers within the object and identifies the 

executable's properties

• Section Header Table
– Details how to access various sections in the file (linker)

• Program Header Table
– Details how to load the executable into memory (kernel)

– Object Code
– Relocation info
– Symbols

• .symtab – Contains information about all symbols being defined or 
imported (not present if binary is stripped)

• .dynsym – Contains information about external symbols that need 
to be resolved or dynamic symbols that are exported by the binary 



Executable and Linkable Format (ELF)

• ELF Header
– Located at the beginning of every ELF binary
– Identifies properties of the ELF binary
– Details how to access section and program header tables

#define EI_NIDENT (16)

typedef struct
{

unsigned char e_ident[EI_NIDENT];     /* Magic number and other info */
Elf32_Half    e_type;                 /* Object file type */
Elf32_Half    e_machine;              /* Architecture */
Elf32_Word    e_version;              /* Object file version */
Elf32_Addr    e_entry;                /* Entry point virtual address */
Elf32_Off     e_phoff;                /* Program header table file offset */
Elf32_Off     e_shoff;                /* Section header table file offset */
Elf32_Word    e_flags;                /* Processor-specific flags */
Elf32_Half    e_ehsize;               /* ELF header size in bytes */
Elf32_Half    e_phentsize;            /* Program header table entry size */
Elf32_Half    e_phnum;                /* Program header table entry count */
Elf32_Half    e_shentsize;            /* Section header table entry size */
Elf32_Half    e_shnum;                /* Section header table entry count */
Elf32_Half    e_shstrndx;             /* Section header string table index */

} Elf32_Ehdr;



Executable and Linkable Format (ELF)

• ELF Section Header Table
– Located by adding:

» base_addr + Elf32_Ehdr->e_shoff 

– Describes sections in the binary
• Contains flags that describe memory permissions and type of data

contained in the section
• Can describe relationships between two sections in an ELF file. 

– Disassembler should take note of special sections
• .dynamic, .plt, .got, .symtab, .dynsym, .text

typedef struct
{

Elf32_Word    sh_name;                /* Section name (string tbl index) */
Elf32_Word    sh_type;                /* Section type */
Elf32_Word    sh_flags;               /* Section flags */
Elf32_Addr    sh_addr;                /* Section virtual addr at execution */
Elf32_Off     sh_offset;              /* Section file offset */
Elf32_Word    sh_size;                /* Section size in bytes */
Elf32_Word    sh_link;                /* Link to another section */
Elf32_Word    sh_info;                /* Additional section information */
Elf32_Word    sh_addralign;           /* Section alignment */
Elf32_Word    sh_entsize;             /* Entry size if section holds table */

} Elf32_Shdr;

base_addr + Elf32_Ehdr->e_shoff



Executable and Linkable Format (ELF)

• ELF Symbols
– Sections of type SHT_SYMTAB or SHT_DYNSYM contain symbol tables.

which are identical and can be parsed the same way. 

– The st_info member describes symbol type, for example whether the 
symbol is a code or data object. 

– Symbols will be associated with code locations once disassembly is 
performed. 

typedef struct
{

Elf32_Word    st_name;                /* Symbol name (string tbl index) */
Elf32_Addr    st_value;               /* Symbol value */
Elf32_Word    st_size;                /* Symbol size */
unsigned char st_info;                /* Symbol type and binding */
unsigned char st_other;               /* Symbol visibility */
Elf32_Section st_shndx;               /* Section index */

} Elf32_Sym;



Executable and Linkable Format (ELF)

• ELF Symbol Parsing
– Enumerate section headers:

– Enumerate the symbol table:

–

– String table lookup:

for (shdr = (base + ehdr->e_shoff), count = 0; 
count < ehdr->e_shnum; 
shdr++, count++)

{
if(shdr->sh_type == SHT_DYNSYM || 

shdr->sh_type == SHT_SYMTAB)
// parse symbol table

}

for (sym = (base + shdr->sh_offset), symidx = 0; 
symidx < (shdr->sh_size / shdr->sh_entsize); 
sym++, symidx++)

{
// store symbol information  

}

Elf32_Shdr *strtab = base + ehdr->e_shoff
+ (shdr->sh_link * ehdr->e_shentsize);

char *string = base + strtab->sh_offset + sym->st_name;

Section Header Structure
typedef struct
{

Elf32_Word    sh_name;
Elf32_Word    sh_type;
Elf32_Word    sh_flags;
Elf32_Addr    sh_addr;
Elf32_Off     sh_offset;
Elf32_Word    sh_size;
Elf32_Word    sh_link;
Elf32_Word    sh_info;
Elf32_Word    sh_addralign;
Elf32_Word    sh_entsize;

} Elf32_Shdr;

Symbol Table Structure
typedef struct
{

Elf32_Word    st_name;
Elf32_Addr    st_value;   
Elf32_Word    st_size;  
unsigned char st_info;  
unsigned char st_other; 
Elf32_Section st_shndx; 

} Elf32_Sym;



Portable Executable Format (PE/COFF)

• Portable Executable and Common Object File Format
– Originally introduced as part of the Win32 specification
– Derived from DEC's Common Object File Format (COFF)
– Object files are generated as COFF and later linked as PE binaries 
– Offical reference: 

Microsoft Portable Executable and Common Object File Format Specification
Microsoft Corporation Revision 6.0 - February 1999



Portable Executable Format (PE/COFF)

• PECOFF Structure
– DOS Stub + Signature

• Pointer to PE Sig at offset 0x3c
• Executable MS-DOS program

– IMAGE_NT_SIGNATURE  (0x00004550)
– File Header (COFF)
– Optional Header (PE Header)
– Data Directories

• Located at static offsets in the binary
• Point to specific data structures

– Imports, Exports, IAT, etc

– Section Headers
– Sections

+-------------------+
| DOS-stub          |   
+-------------------+
| File-Header       |   
+-------------------+
| optional header   |   
|- - - - - - - - - -|
|                   |----------------+
| data directories  |                |   
|                   |                |   
|(RVAs to direc- |-------------+  |
|tories in sections)|             |  |
|                   |---------+   |  |
|                   |         |   |  |
+-------------------+         |   |  |
|                   |-----+   |   |  |
| section headers   |     |   |   |  |
| (RVAs to section  |--+  |   |   |  |
|  borders)         |  |  |   |   |  |
+-------------------+<-+  |   |   |  |
|                   | <---|---+   |  |
| section data 1    |     |       |  |
|                   | <---|-------+  |
+-------------------+<----+          |   
|                   |                |   
| section data 2    |                |   
|                   | <--------------+
+-------------------+



Portable Executable Format (PE/COFF)

• COFF File Header
– Locate by adding the value at offset 

0x3c to the base address
– Number of sections
– COFF Symbol table information
– Optional header size
– Characteristic flags 

• Byte ordering
• Word size

typedef struct _COFF {
WORD    Machine;
WORD    NumberOfSections;
DWORD   TimeDateStamp;
DWORD   PointerToSymbolTable;
DWORD   NumberOfSymbols;    
WORD    SizeOfOptionalHeader;
WORD    Characteristics;

}COFF, *PCOFF; 

+-------------------+
| DOS-stub          |   
+-------------------+
| File-Header       |   
+-------------------+
| optional header   |   
|- - - - - - - - - -|
|                   |----------------+
| data directories  |                |   
|                   |                |   
|(RVAs to direc- |-------------+  |
|tories in sections)|             |  |
|                   |---------+   |  |
|                   |         |   |  |
+-------------------+         |   |  |
|                   |-----+   |   |  |
| section headers   |     |   |   |  |
| (RVAs to section  |--+  |   |   |  |
|  borders)         |  |  |   |   |  |
+-------------------+<-+  |   |   |  |
|                   | <---|---+   |  |
| section data 1    |     |       |  |
|                   | <---|-------+  |
+-------------------+<----+          |   
|                   |                |   
| section data 2    |                |   
|                   | <--------------+
+-------------------+



Portable Executable Format (PE/COFF)

• Optional Header (PE Hdr)
typedef struct _OPTHEADERS{

WORD    Magic;
BYTE    MajorLinkerVersion;
BYTE    MinorLinkerVersion;
DWORD   SizeOfCode;                    // code segment size
DWORD   SizeOfInitializedData;         // data segment size
DWORD   SizeofUninitializedData;       // data segment size
DWORD   AddressOfEntryPoint;           // entry point
DWORD   BaseOfCode;
DWORD   BaseOfData;
DWORD   ImageBase;
DWORD   SectionAlignment;
DWORD   FileAlignment;
WORD    MajorOperatingSystemVersion;
WORD    MinorOperatingSystemVersion;
WORD    MajorSubsystemVersion;
WORD    MinorSubsystemVersion;
DWORD   Reserved;
DWORD   SizeOfImage;
DWORD   SizeOfHeaders;
DWORD   CheckSum;
WORD    Subsystem;
DWORD   DllCharacteristics;
DWORD   SizeOfStackReserve;
DWORD   SizeOfStackCommit;
DWORD   SizeOfHeapReserve;
DWORD   SizeOfHeapCommit;
DWORD   LoaderFlags;
DWORD   NumberOfRvaAndSizes;           // data directories

}OPTHEADERS, *POPTHEADERS;



Portable Executable Format (PE/COFF)

• COFF Section Tables
– Located by adding:

• Then enumerate the data directories until you hit the section tables 

– Relocation entries are only present in object files 
– Line-number entries associate code with line numbers in source files
– Characteristic flags indicate section types, memory permissions, and 

alignment information 

typedef struct _SECTIONTABLES {
BYTE    Name[8]; // Section name 
DWORD   VirtualSize; // Size of section in memory 
DWORD   VirtualAddress; // Address of mapped section 
DWORD   SizeOfRawData; // Size of section on disk 
DWORD   PointerToRawData; // Section file offset 
DWORD   PointerToRelocations; // Relocation entries file offset 
DWORD   PointerToLineNumbers; // Line-number entries file offset 
WORD    NumberOfRelocations; // Number of relocation entries 
WORD    NumberOfLineNumbers; // Number of line-number entries 
DWORD   Characteristics; // Characteristics flags

}SECTIONTABLES, *PSECTIONTABLES;

base_addr + *(uint32)(base_addr + 0x3c) 
+ sizeof(COFF) + PCOFF->SizeOfOptionalHeader



Portable Executable Format (PE/COFF)

• PECOFF Symbols
– Data_Directory[1] – Import Directory

• .idata section

– Import Directory entries describe DLLs
• DLL Name
• RVA of Import Lookup Table
• RVA of Import Address Table

– Image Thunk Data 
• Table of structures describing functions to 

be imported from the module

typedef struct _IMAGE_IMPORT_DESCRIPTOR {
union {

DWORD   Characteristics;
PIMAGE_THUNK_DATA OriginalFirstThunk;

} DUMMYUNIONNAME;
DWORD   TimeDateStamp;  
DWORD   ForwarderChain; 
DWORD   Name;
PIMAGE_THUNK_DATA FirstThunk;

} IMAGE_IMPORT_DESCRIPTOR,*PIMAGE_IMPORT_DESCRIPTOR;

Directory Table

Null Directory Table

1.DLL Import Lookup Table

Null Entry

2.DLL Import Lookup Table 

Null Entry

Hint Name Table



Portable Executable Format (PE/COFF)

• PE Symbol Parsing
– Locate and loop Import Directory Table

– Get the pointer to the FirstThunk

– Loop Thunks for symbol import data 

Import name entry
typedef struct _IMAGE_IMPORT_BY_NAME {

WORD    Hint;
BYTE    Name[1];

} IMAGE_IMPORT_BY_NAME,*PIMAGE_IMPORT_BY_NAME;

Import Thunk
typedef struct _IMAGE_THUNK_DATA {

union {
LPBYTE    ForwarderString;
PDWORD    Function;
DWORD     Ordinal;
PIMAGE_IMPORT_BY_NAME   AddressOfData;

} u1;
} IMAGE_THUNK_DATA,*PIMAGE_THUNK_DATA;

Directory Table

Null Directory Table

1.DLL Import Lookup Table

Null Entry

2.DLL Import Lookup Table 

Null Entry

Hint Name Table

IDD->FirstThunk

struct IMAGE_IMPORT_BY_NAME[]



Disassembly Analyzer

• The final component of a useful disassembler for reverse 
engineering is the disassembly analyzer.

• The analyzer builds a database of associations from the 
binary and can perform additional specialized disassembly 
analysis tasks. 

• Disassembly analyzers attempt to aid the reverse engineer 
by automating some of the manual processes used when 
looking at assembly code dead listings.

• Programmatic disassembly analysis is an imperfect science. 
The more powerful the analyzer becomes, the closer it 
becomes to truly emulating the disassembled code 



Disassembly Analysis



Disassembly Analysis

• A wealth of information can be generated using 
very simple analysis logic. 

• Data associations including function detection, 
static data references, string references, and 
execution branch references can be performed 
through simple opcode and operand parsing.

• Assembly hinting or commenting can aid the 
reverse-engineer by eliminating guesswork.
– System call detection and argument labelling
– Function call calling convention and argument detection
– Assembly syntax hints



Data Associations

• Function detection
– Standard function detection is done by pattern matching for 

function prologues. 
– Prologues are generated during compilation and typically 

perform tasks including frame initialization and stack canary 
generation.

Standard function prologue 

| 55           |   push %ebp ; push old frame pointer
| 89 e5        |   mov %esp, %ebp ; store current stack pointer as new frame

Microsoft Visual Studio “hotfix” function prologue for system libraries and drivers

| 90           |   nop ; five nops make space for a long relative jmp
| 90           |   nop ; 
| 90           |   nop ;
| 90           |   nop ;
| 90           |   nop ;

; Begin Function Prologue
| 8b ff        |   mov %edi, %edi ; 2-byte nop (space for short relative jmp)
| 55           |   push %ebp ; push old frame pointer
| 89 e5        |   mov %esp, %ebp ; store current stack pointer as new frame



Data Associations

• Function detection without prologue
– Cross reference calls in case of -fomit-frame-pointer

– Symbolic function names are created for code locations that do 
not have a pre-defined symbol associated with them.

080483b4 |
........ |  ;;;;;;;;;;;;;;;;;;;;;;;;;;;
........ |  ;;; S U B R O U T I N E ;;;
........ |  ;;;;;;;;;;;;;;;;;;;;;;;;;;;
........ |  sub_080483b4:                           ;  xrefs:  0x08048403  
........ |    sub     $0x3c, %esp                   ;
080483b7 |    mov     0x40(%esp), %eax              ;
080483bb |    mov     %eax, 0x4(%esp)               ;
080483bf |    lea     0x10(%esp), %eax              ;

080483f4 |    shr     $0x4, %eax                    ;
080483f7 |    shl     $0x4, %eax                    ;
080483fa |    sub     %eax, %esp                    ;
080483fc |    movl    $0x804851e, (%esp)            ;
08048403 |    call    0x80483b4                     ;



Data Associations

• Cross Referencing
– Disassembly analyzers create a database of cross-references which 

describe the relationships between code and data in the binary.

– Cross-references are determined by examining immediate operand 
values or by tracing register exchanges to watch references to a
known value.

– The use of an instruction decoder core which implements operand 
permissions flags is required.

• libdasm – available at nologin.org by jt
• libdisasm – available at bastard.sf.net by _mammon

– For each instruction, analyze the operands for internal relationships
• Check for operand types: IMMEDIATE, MEMORY, REGISTER
• Check operand permission flags

– Cross-references are stored in data-structures for later use.



Data Associations

• Code execution flow can be determined by detecting 
code branches which are indicated by the RET, IRET, 
INT, CALL and the various JMP opcodes for IA-32. 

• Flow Control Instructions
– Call 

• Indicates a new function
• Needs to be checked against symbol tables when displaying disassembly
• Pushes calling address before transferring execution control 

– Branch 
• Any opcode of the JMP variety
• Indicates new code 'block'
• Code blocks can be analyzed for functionality 
• Used for loops, signal handlers, etc 

– Return 
• Used to divert flow control by popping a pointer from the stack



Data Associations

• Symbols, strings, and pointers within pre-initialized 
data sections in the binary are examples of data 
cross-references that can be determined through 
simple disassembly analysis. 

00401050 |
........ |  ;;;;;;;;;;;;;;;;;;;;;;;;;;;
........ |  ;;; S U B R O U T I N E ;;;
........ |  ;;;;;;;;;;;;;;;;;;;;;;;;;;;
........ |  sub_00401050:                   ;  xrefs:  0x004010a7 
........ |    push    %ebp ;
00401051 |    mov %esp, %ebp ;
00401053 |    sub     $0x8, %esp ;
00401056 |    movl $0x402000, (%esp)     ; "this string is a pre-initialized variable\n"
0040105d |    call    <printf>              ; imported shared library symbol
00401062 |    leave                         ;
00401063 |    ret                           ;
........ 
004010a7 |    call    <sub_00401050>        ; symbolic function names cross-referenced
004010ac |    mov $0x0, %eax ;
004010b1 |    leave                         ;



Hinting

• Disassemblers should use a database of information 
regarding system calls and standard system library 
calls to aid in disassembly hinting.

• System Call hinting can help a reverse engineer 
determine what system services a function utilizes. 
– Syscall Numbers are stored in /usr/src/linux/include/asm/unistd.h
– Arguments are typically passed in registers, so once data xrefs are 

applied we can tell if user-supplied data is being used in a system call.

• Function argument types and high level data-
structures can be parsed from header files. 
– Every platform has a set of default libraries and headers.
– The more the disassembler knows about variable types, the better it 

can understand how the data is being used. 



Hinting

• Function call argument detection
– Function prologues swap the the current stack pointer into ebp to 

represent the base of the stack for the local function 
– Function arguments can be determined by internal references to 

offsets of ebp
– In the case of code compiled without frame pointers, offsets to esp will 

be used. 
– Arguments can be determined as local variables vs passed arguments 

depending on their offset to ebp
– Depending on calling convention, arguments to functions are typically 

passed via the stack 
• Stdcall – push args in reverse order to the stack (last to first)
• Fastcall – uses registers when possible to hold args

– Argument types can be determined via basic heuristics or by 
prototype parsing 

• Heuristics can determine if passed values are pointers to memory, string 
references or integer values 



Disassembly Analysis

• The features described in this section should be 
standard fare. 

• IDA Pro, HTE, the bastard, and Codis are currently 
the only disassemblers available which implement 
most of the features. 

• Required development time: 2 - 3 weeks

Codis Demo



Advanced Disassembly Analysis



Advanced Disassembly Analysis

• The flexibility offered by DataRescue’s IDA Pro SDK 
has allowed for recent advancements in disassembly 
analysis capabilities. 

• IDA Pro plug-ins have access to the program’s 
internal database which allows for rapid 
development of concept ideas.
– Path Analysis 

• Peter Silberman’s loop detection plugin

– Data Analysis
• idastruct - data structure enumeration



Path Analysis

• Path analyzers recursively follow execution flow to 
build a control flow graph.

• When reverse engineering, entire code paths can be 
quickly grouped for functionality to speed the code 
recognition process. 

• Linear disassemblers can not determine the 
relationships of code blocks, and may disassemble 
instructions incorrectly if data is injected in-between 
compiled code 



Path Analysis

• Hand written assembly code can cause 
disassemblers to generate code listings that are 
completely incorrect:

(gdb) disas loc
Dump of assembler code for function loc:
0x0040107a <loc+0>:     pushw $0xfeeb
0x0040107e <loc+4>:     jmp 0x40107c <loc+2>
0x00401080 <loc+6>:     pushl 0xaabbccdd
0x00401086 <loc+12>:    mov $0x0,%eax
0x0040108b <loc+17>:    leave  
0x0040108c <loc+18>:    ret 

------------------------------------------------

Breakpoint 1, 0x0040107a in loc ()
1: x/i $pc  0x40107a <loc>:     pushw $0xfeeb
(gdb) si
0x0040107e in loc ()
1: x/i $pc  0x40107e <loc+4>:   jmp 0x40107c <loc+2>
(gdb) si
0x0040107c in loc ()
1: x/i $pc  0x40107c <loc+2>:   jmp 0x40107c <loc+2>
…



Path Analysis

• Once a control flow graph has been built 
programmatically, it can easily be represented using 
data visualization software.



Loop Detection

• Loop detection is an advanced application of control 
flow analysis. 

• Loop detection can be applied to recognize program 
structure as well as specific types of vulnerabilities.

• Recognizing loops can aid other disassembly 
analysis tasks and eliminate heavy analysis of code 
multiple times. 

• Example: Peter Silberman’s Loop Detection Plugin
– Designed to help reverse-engineers locate code loops that may lead to 

exploitable scenarios. 



Loop Detection

• Reducible loops have one entry point and can be 
reduced to a Natural Loop.

• Natural Loop structure is found by determining node 
dominance in the control flow graph.

• If node C is unreachable other than through node B, 
then B dominates node C. 

In this diagram, there is a small loop 
between B and D. 

The Natural Loop can be determined by 
locating the path between the two nodes 
that are under dominance of B. 

The secondary loop between B and D 
can be ignored when determining the 
Natural Loop



Loop Detection

• Traditional loop detection algorithms are known to 
have trouble detecting loops with more than one 
potential entry point (non-reducible loops).

• Using IDA’s powerful cross-referencing and flow 
control graphing algorithms, Peter has developed a 
method for identifying irreducible loops. 

• Peter’s work can be found on www.uninformed.org



Loop Detection

<- Loop

No Loop ->



Data Analysis

• Unlike code paths, analyzing data relationships is a 
non-trivial exercise. 

• Data references are occasionally supplied as 
immediate values, but are more often passed 
around in registers to perform operations. 

• There are numerous obstacles to overcome when 
tracing assembly for the purpose of data reference 
tracking – it has yet to be implemented successfully. 

• To follow data paths, a variable tracing algorithm 
must be developed… or does it? 



Data Analysis

• Variable Tracing
unsigned long registers[8];
unsigned long eip;
unsigned long eflags;

typedef struct _itrace {
struct _itrace *next, *prev;
ea_t addr; // address of reference
ea_t xref; // address referenced
unsigned char  reftype; // RWX

} itrace_t;

// init trace
add_xref(ea, dst);

// simplified variable tracing loop
while(ea = ea.next)
{       

while(op = operand.next)
{

mask = SIZE_MASKS[opsize];
switch(op->type)
{
case o_imm:

val = op->addr & mask;
break;

case o_displ:
val = (registers[op->reg] + op->addr)& mask;
break;

case o_phrase:
val = registers[op->phrase] & mask;
break;

}
}

if(search_itrace_list(val))
remove_xref(ea, dst);

else if search_itrace_list(src)
add_xref(ea, dst);
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Data Analysis

• Combinatorial Explosion
– Occurs when a huge number of possible combinations are created by 

increasing the number of entities which can be combined--forcing us 
to consider a constrained set of possibilities when we consider related 
problems. 

• Variable tracing is susceptible to combinatorial 
explosion and infinite recursion if bounds are not set 
on the depth of the search. 

• In theory static data reference tracing is possible 
but has yet to be successfully implemented beyond 
proof of concept. 



Emulation

• CPU emulation can be used as a powerful resource 
when analyzing static code. 

• CPU Emulation involves the execution of instructions 
in a virtual CPU.

• Virtual CPUs emulate the core components of a 
hardware CPU in software.
– Instruction decoding/evaluation
– Registers
– Memory

• Emulation is “safe”
– depending on implementation of course



ida-x86emu

• ida-x86emu is an opensource emulator written by 
Chris Eagle and Jeremey Cooper
– Emulator codebase can be easily hooked for special analysis purposes.
– Undergoing development
– Some features are missing but code is easily hackable
– Use the CVS version!

• Evaluates complex instruction sequences

• Emulates dynamic memory allocator functionality 

• Can hook PE imports and load required libraries 
– Sometimes has some hiccups – currently looking into this 



idastruct

• idastruct is data structure reference tracing code 
built on top of ida-x86emu.

• Arbitrary bounds within the emulated memory space 
can be traced using simple logic. 

• As operands are evaluated for each instruction, a 
check is made to determine if that operand is 
referencing memory that is being traced. 

• IDA database is updated with structure information 
and member data as references are detected and 
types are applied to the reference. 



idastruct

• Structure reference tracing
void struct_trace(ea_t addr)
{

strace_t *trace;
ua_ana0(addr);

for(int opnum = 0; cmd.Operands[opnum].type != o_void; opnum++)
{

op_t *op = &cmd.Operands[opnum];
…
// evaluate operand value
…
for(trace = strace; trace; trace = trace->next)
{

// determine if operand value points within trace bounds
if(val >= trace->base && val <= trace->base + trace->size)
{

…
struc_t *sptr = trace->sptr;
member_t *mptr = get_member(sptr, val - trace->base);

if(!mptr)
{

char *mtype;
switch(get_dtyp_size(op->dtyp))
…
// assign a name to the new member that indicates type size 
…



idastruct

• Structure reference tracing
void struct_trace(ea_t addr)
{

…
// create ida structure member
if(struct_member_add(sptr, name, val - trace->base, 0, NULL, 

get_dtyp_size(op->dtyp)) < 0)
{

trace = trace->next;
continue;

}
mptr = get_member(sptr, val - trace->base);

}
…
// update member reference in ida disassembly
tid_t path[2];
path[0] = sptr->id;
path[1] = mptr->id;
op_stroff(addr, opnum, 

path, 2, 0);
}



Conclusion

• The ability to identify arbitrary structures via binary 
analysis should speed software reversing in all 
areas.

• Directly applies to vulnerability discovery through 
automation of fuzz template generation.

• Further analysis may be performed on the structure 
relationships within execution paths to tie complete 
structure hierarchies together. 



Questions?
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